Uc COMPUTER SCIENCE DEPARTMENT 'v*'@?
)

High-Level Synthesis Revisited

Progress and Applications

Jason Cong

Chancellor’s Professor, UCLA
Director, Center for Domain-Specific Computing
Co-Director, PKU/UCLA Joint Research Institute in Science and Engineering

cong@cs.ucla.edu
http://cadlab.cs.ucla.edu/~cong

Outline
Brief review of history of HLS
The UCLA effort

= Original motivation
= The Wave of ESL Synthesis

= Commercialization
+ Highlights of some algorithmic innovations

< Applications

= Used in design of accelerator-centric architectures

Page 1

High-Level Synthesis: A Brief History

+ Early attempts

= Research projects
= 1980s ~ early 1990s

+ Early commercialization

= Tools from major EDA vendors
= 1990s~early 2000s

+ Recent efforts
= Major vendors + startups
= 2000 ~ present

Recent Efforts

+ A new generation of tools emerge after 2000

« Capture design using C-based languages

= C/C++/SystemC
* Extensions/pragams/directives to overcome limitation of C

= Others: Matlab, BlueSpec, Esterel, etc.
= Nobody seems to use VHDL/Verilog for HLS now

A plethora of new HLS systems starting from C-based languages

= Academic or chip providers: ASC (Imperial College), CASH (CMU), C2H (Altera),
DIME-C (Nallatech), GAUT (UBS, France), ROCCC(UCR), Spark (UCSD), Trident
(Los Alamos National Lab), xPilot (UCLA)

= EDA vendors: AutoESL (now Xilinx), Cadence (C-to-Silicon), Celoxica (now
Mentor DK Design Suite), Forte (Cynthesizer), Impulse C, Mentor Catapult (sold
to Calypto), NEC (Cyber), Synfora (acquired by Synopsys)

+ Many chips delivered, ongoing adoption

Page 2

Outline

Brief review of history of HLS
o The UCLA effort

= Original motivation
= The Wave of ESL Synthesis

= Commercialization

+ Highlights of some algorithmic innovations

+ Applications

= Used in design of accelerator-centric architectures

Original Motivation: Overcome Interconnect
Bottleneck in Nanometer Designs

<Interconnect delay dominates the performance
¢But not all long wires are equally bad

¢Those to be crossed in a single clock cycle are worst
A physical synthesis idea -

+Can we allocate multiple clock cycles to all long wires?
&Our study:

¢Does not work if we start from RTL

+0Only feasible if we start from a behavior description

#Need to total freedom to schedule communication and communication

Page 3

MCAS: Architectural Synthesis for Multi-cycle
Communication [TCAD 2004]

Cyclel
C/VHDL
" Cycle2
‘ CDFG generation ‘

,,,,,,,,,,,,,,,,,,,,,,,,,,,, e - e
‘ Resource allocation ‘ \ / Cycled
R traints |
esource constraints ° x ? Cyeles
Functional unit binding
: 1Interconnected Component : ¢ ¢/ Cyelet
Graph (ICG) ‘ ‘ Cycle?
g = | ‘ Scheduling-driven placement ‘ :
U(‘i ; Location information
o y . fi . Ai
2_ % Placement-driven 1heg. filex sfieg. fley
A~ B rebinding & scheduling
= @
&S !
2.3
- ‘ Register and port binding ‘

‘ Datapath & FSM generation ‘

RTL VHDL Floorplan Multi-cycle path
files constraints constraints

The Wave of ESL (Electronic-System Level) Synthesis

+ Embedded processors are in almost every SoC
= Need SW/HW co-design and exploration
= C/C++/SystemC is a more natural starting point

+ Huge silicon capacity requires high-level of abstraction
= 700,000 lines of RTL for a 10M gate design is too much!

+ Verification drives the acceptance of SystemC
= Need executable model to verify against RTL design
= More and more SystemC models are available

+ Need and opportunity for aggressive power optimization

Accelerated computing or reconfigurable computing also need C/C+
+ based compilation/synthesis to FPGAs

Page 4

XPilot: Behavioral-to-RTL Synthesis Flow [SOCC’2006]

Behavioral spec. + Code transformation & optimization
in C/C++/SystemC = Loop unrolling/shifting/pipelining
l = Strength reduction / Tree height reduction
Platform " = Bitwidth analysis
description = Memory analysis ...
compiler (LLVM v anay

+ Behavior synthesis & optimizations
= Scheduling

- = Resource binding, e.g., functional unit
binding register/port binding

+ vpArch-generation & RTL/constraints

[RTL + constraints | e
= Verilog/VHDL/SystemC

= FPGAs: Altera, Xilinx
= ASICs: Magma, Synopsys, ...

FPGAs/ASICs

MPEG-4 Profile Decoder: Synthesis Results
* Complexity of synthesized RTLs

Xilinx FPGA L] e ona-©
= mory
LS [Controller] [CnmmuerJ Module Name Source File VHDL line#
frneh
File

Copy copyControl.c 2815
Controller (287)

. Er nkm ler
——— Il
I
H ° e Texrurer — LS
: E 4681
E% Comp. (312)

Motion Motion-compensation.c

Object -
,,,,,,,, © bitstream.c

MPEG-4 SP Decoder 439) 6093
motion_decode.c 10034

Setting Module Slices | BRAMs | Period (ns) Parser/ (492)

VLD parser.c

Video:CIF Parser/VLD 2693 (1095) 12036
e Motion Comp. 899 texture_vld.c 6089

30fps (504)
Texture/IDCT 2032 16 8.0 Texture/ texture_idct.c 1537

Device:v2 IbcT (1819)

Texture Update & Texture textureUpdate.c

30 2736

P Copy Control o Update (220)
Total 5168 56921

Page 5

Commercialization: xPilot was Licensed to AutoESL

BuidAjojoid pue ‘uonesylIaA ‘uone|nwiIs N

FPGA
Prototype
N—

®

Design Specification

II C/C++/SystemC I User Constraints

N\

/ Compilation &
Elaboration

[Advanced Code
Transformation

youaqjse] uowwod

el
sisayjufs s

(Behavioral & Communication
Synthesis and Optimizations
_

>
(=
-
o
a3
)
-
=
=

\| RTL SystemC Constraints

RTL HDLs & J Timing/Power/Lay

out|

g

ASICs/FPGAs

Implementation

Platform
Characterization
Library

¢ AutoESL
= Founded 2006

= Acquired by Xilinx in 2011

¢ Served a number of
semiconductor/system

companies

= For both FPGA and ASIC

designs

AutoPilot Results: Sphere Decoder (from Xilinx)

Decoder

— ~4000 lines of C code

— Xilinx Virtex-5 at 225MHz
Compared to optimized IP

— 11-31% better resource
usage

Wireless MIMO Sphere L
"

4x4 4x4 Matrix Inverse
Matrix Matrix Norm
L Py Subst. Reorder }
T
33 - 3x3 Matrix Inverse NG
Back Matrix Search/
multiply QRD Subst. multiply | | Reorder }
T
2x2
Norm

Matrix
multiply

2x2 Matrix Inverse
Back Ma{rix
QRD Subst. multiply

Search/
Reorder

RTL AutoPilot Diff
Expert Expert (%)

LUTs 32,708 29,060 [-11%
Registers 44,885 31,000 |-31%
DSP48s 225 201 -11%
BRAMs 128 99 -26%

8x8 RVD
QRD

Y I

Tree Search Sphere Detector

Min

Stage 8 Search Il

TCAD April 2011 (keynote paper)

“High-Level Synthesis for FPGAs: From
Prototyping to Deployment”

Page 6

AutoPilot Results: Optical Flow (from BDTI)
+ Application

= Optical flow, 1280x720 progress scan
= Design too complex for an RTL team

¢ Compared to high-end DSP:
= 30X higher throughput, 40X better cost/fps

Highest Frame | Cost/performance
Rate @ 720p ($/frame/second)

(fps)

Xilinx $27 183 $0.14
Spartan3ADSP
XC3SD3400A
chip

Texas $21 5.1 $4.20
Instruments

TMS320DM6437

DSP processor

BDTi evaluation of AutoPilot
http://www.bdti.com/articles/AutoPilot.pdf

AutoPilot Results: DQPSK Receiver (from BDTI)

+ Application
pp Hand-coded | AutoPilot
= DQPSK receiver RTL
= 18.75Msamples @75MHz clock
Xili 5.9% 5.6%
speed XICIZ?;D3400A chip

utilization ratio

+ Area better than hand-coded (lower the better)
BDTi evaluation of AutoPilot
http://www.bdti.com/articles/AutoPilot.pdf

1

=) found_words
1 2. 3 4. 5.]

:> Matched Carrier Timing DQPsSK Viterbi Deframer

Q

Filter Recovery Recovery Demad Decoder deframed_data

coeff_ind ﬂ suﬂvalueﬂ cnrrlhresholdﬂ i iframe,size

| Control Registers |

Page 7

What Made xPilot/AutoPilot Successful

+ Use of LLVM compilation infrastructure

= A good decision made in 2004

+ Platform-based synthesis

= RTLs are optimized for different implementation platforms
* Cell and interconnect delays, memory configurations, I/O ports/types

+ Most importantly, algorithmic innovations
= Global optimization under multiple constraints, objectives

= Be competitive to manual RTL designs

Outline
Brief review of history of HLS
The UCLA effort

= Original motivation
= The Wave of ESL Synthesis
= Commercialization

+ Highlights of some algorithmic innovations

+ Applications

= Used in design of accelerator-centric architectures

Page 8

Example: Versatile Scheduling Algorithm Based on SDC (DAC’06)

+ Scheduling problem in behavioral synthesis is NP-
Complete under general design constraints

+ ILP-based solutions are versatile but very inefficient
+ Hueristics are often used (e.g. list scheduling)

« Our solution: An efficient and versatile scheduler
based on SDC (system of difference constraints)

= Applicable to a broad spectrum of applications

¢ Computation/Data-intensive, control-intensive, memory-
intensive, partially timed.

* Salable to large-size designs (finishes in a few seconds)
= Amenable to a rich set of scheduling constraints:

* Resource constraints, latency constraints, frequency
constraints, relative 10 timing constraints.

= Capable of a variety of synthesis optimizations:

* Operation chaining, pipelining, multi-cycle
communication, incremental scheduling, etc.

CSO0

CS1

|

Scheduling - Our Approach (DAC’06)

+ Overall approach
= Current objective: high-performance

= Use a system of integer difference constraints to
express all kinds of scheduling constraints

= Represent the design objective in a linear function

* adder (+/-) 2ns

o-~4Lo©°
Liblioco®°e

0

0 1

= Platform characterization: Vs g g
0 1

= Target cycle time: 10ns A

= Resource constraint: Only
ONE multiplier is available

= Dependency constraint
7= A7Y

.

= Frequency constraint
¢ RV, VR iXs=X, =1
= Resource constraint
¢ RV, Vi X=X, 21

- X,

) : X

. X3

X,

* multipiler (*): 5ns Xs

X

V2D v

Totally unimodular matrix: guarantees integral solutions

1X3-X, =0
V3D Vst
77

X;=X; =0

X;=X; 20
X=X, =0

o

Loodl

b

Page 9

Extensions to Handle Soft Constraints [ICCAD’09]

- Some constraints are preferred

but not required
- Example: operation gating

* For power optimization

+ Can be done during scheduling

+ Essentially adding predicate to
operations to avoid executing
unnecessarily.

int module(int A, int B)
{
int B2 = B * B;
bool ¢ = A > 5;

int r=c? A : B2;

return r;

Scheduling with Soft Constraints

¢ Soft constraint

= A constraint that is preferably
satisfied but not necessarily

= Penalty associated with
violation
+ Benefits of using soft
constraints
= Always consistent
= Easy to specify an intention.

¢ Hard constraints

= For dependency, throughput,
latency, frequency, etc.

Functional

\

Hard Constraint
Generators

Soft Constraint
o CLLLT]
Generators

N/

Optimization \ QoR
Engine Evaluators

Output Result

20

Page 10

Soft Constraint Solver

min ¢ls

st. Gs <p (hard constraints)
Hs < q (soft constraints).

Add penalty term ¢(v)
min - cTs+ 300 6(v;)
s.t. Gs < p G O -
Hs —-v < g¢q or H -1 [v] <
< 0. 0o -1

l introduce variable v to denote the violation

p

q

0
G O

H -1
Theorem: {o _1} is totally unimodular when both hard
constraints and soft constraints are of the integer-difference form.

Implication: the problem can be solved optimally in polynomial time

if the penalty term is convex.
21

Experimental Results

- Benchmarks with control flow

— Arithmetic: BoxMuller, dfmul
— Multimedia: addr, MotionComp, MotionEst

- Compare 4 approaches
— Scheduler without considering operation gating (Baseline).
— An iterative algorithm proposed by C. Chen [DATE’02] (Chen).
— Soft constraints with penalty approximation (Soft).
— An ILP formulation that handles soft constraints precisely (ILP).

Page 11

Comparison on Power

10

9 4

8 4

7 4

6 - m Baseline
5 - H Chen
4 - u Soft
3 m|P
2 4

1 4

0

T T T T
addr BoxMuller dfmul MotionComp ~ MotionEst
Our approach provides
* 33.9% power reduction compared to baseline on average
*17.1% power reduction compared to Chen’s method on average

* Close result to the ILP method

23

Background of Observability Analysis

+ Power management based on observability don’t-cares
= Clock gating, operand isolation, power gating, etc.

+ Opportunity limited when RTL is fixed

= Need observability analysis and optimization when RTL is
created.

1
-1
>3

* A\

rais

Il

Page 12

Observability at Different Levels

i

le(int A,[irg B)

{

| Behavioral Model | BL-Observability

scheduling
I Fsvo-observability
binding
IR Rruobservability [rsmoce) - ¢ |
FSMD: finite state machine with datapath No resource sharing

| RTLO(B2) = lc |

25

Observability Analysis at Behavior Level [isLPED09]

+ For a select operation int module(int A, int B)
=y=c?a:b; ot
int B2 = B * B;
s BLO(C) = BLO(y) bool ¢ = A > 5;
. BLO(a)= BLO(Y) Ac int r=c? A : B2;
= BLO(b) = BLO(y) A\ !c return r;
}

¢ For a Boolean and

"y=adb; BLO(r) = true
= BLO(a)=BLO(y) A b BLO(c) = BLO(r) = true
. BLO(b) = BLO(y) A a BLO(A) =BLO(r) Ac=c

BLO(B2) = BLO(r) A c = Ic
BLO(A) = BLO(A) V BLO(c) = true

BLO(B) = BLO(B2) = Ic
Complexity: O(|V] + |E|) Boolean condition calculations

|V|: number of nodes, |E|: number of edges (in dataflow graph).

+ Similar for Booean or

26

Page 13

Problem: Inaccurate with Correlated Select Inputs
+ The previous way to handle select x ¥ z
operation l_—], l
= BLO(c2) = true et o1
+ However, we claim that ? =
= BLO(c2) = !c1 2
= Because when c1 is false, s1 and s2
both equal to x out
+ To consider such opportunities, we int module(int x, int y, int z,
merge select operations in the bool c1, bool c2)
graph into a single one. {
= A (k, I)-select is one that takes k control int sl =cl?x:y;
inputs (b1, ..., bk), | data inputs (d1, ..., int s2 = cl1? x : z;
d) and generates one output z.
= Conditions absorbed in the select int out = €2 ? s1 & s2;
return out;

Dataflow Graph Abstraction [TODAES’2010]

+ Observability can be analyzed using previous method in Boolean

network analysis
= However, need to break word-level network into bit-level

Desired abstraction
= Word-level analysis for efficiency

= Ignore details of complex operations (such as multiplication)
* Treat them as black boxes
* The results called smoothed observability

= Keep all information regarding observability-masking operations
* Including select, Boolean operation for condition evaluation

= Consider data correlations
* Condition correlation: Boolean operations
* Data correlation (for input of select operations)

Details in TODAES’2010.

Page 14

Automatic Memory Partitioning -- Motivation

Design input for HLS are often
captured by loop nests

+ Most commonly used objective of

HLS is throughput optimization

+ Loop pipelining allows a new
iteration to begin processing before
the previous iteration completes

+ Memory port number is often a
limiting factor

for (i=2; i < N; i++)
sum +=A[...] + A[...] +A[...];

LD LDi+ + +
L2 MABH 2D (=1 [[

Pipelining with II=1 is infeasible

using a dual-port memory

Initiation interval (Il) : number of time steps before
the next iteration begin processing

Meeting memory port constraint in scheduling is a challenging problem!

29

Increase Memory Bandwidth

Increase cell ports

< Data duplication
= Increase read ports
= Huge area overhead

+ Memory partitioning

Cyclic

Partition

Bank 2
Size ~ K, Bandwidth= N*p

Bank 1

Size = K, Bandwidth=p

N: Partition Factor

p: memory port number

s B B 8 &

N port.col aren

o
L

9

° 2

€
potrumber N

Area of SRAM cells
against ports

Bank N

30

Page 15

Motivational Example

Iteration i Iteration i+1 1-port memory, ll=1

KD) OPE BOEDDND

D &3

()

KD
KD
Ki+3)

(b)

Iteration i Iteration i+1

Scheduling may affect final
memory partitioning results

Problem Formulation
¢ Given

+ Computation kernels in loop nests

+ Array references in each loop nest

+ Platform information (memory ports limitation)
+ Throughput constraints (ll)

+ Find memory partitioning P and scheduling for each
memory access

+ Meet throughput constraints I
+ At each time step, #accesses < #ports

Page 16

Memory Partitioning

For given memory inputs, how to generate efficient memory

partitioning and scheduling results?

Memory Partitioning Algorithms

Affine memory references

Horizontal Algorithm
(Cong, ICCAD09)

Vertical Algorithm
Mixed Algorithm
\

Non-affine memory refs

Memory Reference with
modulo indices

(Wang, ASP-DAC12)

33

Memory and Operation Scheduling

Coupling

+ Use one set of constraints and
objective functions for both
memory scheduling and
operation scheduling

¢ Pros

= Good QoR: remove some
unnecessary temporal registers

¢ Cons

= The source code of operation
scheduling maybe unavailable

= Larger complexity, longer runtime

+ ICCAD 2009, ASP-DAC 2012

Decoupling

¢ Decouple memory references from
input source code

+ Build a stand-alone memory system
with streaming interface to
communicate with computation parts

¢ Pros

= Don’t need source code of operation
scheduling

= Can be co-operate with (different) commercial
HLS tools
¢ Cons

= Compromised QoR for possible unnecessary
registers

= Hard to handle complex dependencies

+ ICCAD 2012

34

Page 17

Horizontal Algorithm Overview *

Loop Nest Memory Pla'tform
Information)
v

‘ Array Subscripts Analysis ‘

‘ Partition Candidate Generation ki

Memory Scheduling and

Port Confliction Calculation

Y

Port confliction reduced?

N

Increase 11

Meet port limitation?

*J. Cong, W. Jiang, B. Liu, and Y.

Zou, "Automatic Memory

Partitioning and Scheduling for

‘ Loop Pipelining and Scheduling ‘ '(I')h roughpu tlczgg 20}:); wer
ptimization”,

Pipeline Results 35

Candidates Generation

+ Cyclic partitioning 2
= Easy to implement 2
= Very effective in practice as
¢ Theorem _
Vi, a,*i+b,#a,*i+b, mod N A .
<> ged(ay-ay, N) 1 (by-b,) al a2
a3 a4
+ Example as 26
* iand (3*i+1) will always be distributed to different Iy u
memory banks for 2-way cyclic partitioning A A2

Cyclic partitioning

36

Page 18

Port Limitation Checking
+ Conflict graph G

= Node: array references

= Edges: there is an edge <i,j> in G if
array reference R; and R; may access
the same memory bank at certain loop
iteration

¢ Theorem

= |f max_clique(G) < port_limit, then at
each time step, number of concurrent
memory accesses < port_limit

i

Memory accesses
and scheduling

@P.ﬂiﬁ

Conflict Graph

37

Memory Scheduling

« lterative Algorithm

= Select a partitioning candidate from
candidates group

= Construct conflict graph G

= Check |max_clique(G)| < port_limit

* If yes, return the final partitioning solution

* Otherwise, reschedule and test again

Memory accesses
and scheduling

C Al
@D’ﬂﬁb

Confliction Graph

Max_clique =3

38

Page 19

Experimental Results (for lithography simulation
acceleration)

<oPlatform: Xilinx Virtex-4 FPGA

II |latency [BRAM |[LUT |FF |SLICE |[CP (ns)
Original| 16 1603| 164| 1667| 584| 1220| 9.996
Manual 1 113| 184 2839| 1822| 2027| 9.939
AMP (1) 1 112| 176| 2749| 1941| 2066| 9.843
AMP (2) 2 211| 168| 2018 714| 1583 9.984
AMP (4) 4 407| 164| 1890 727| 1435| 9.811
+ AMP: Automatic memory portioning (this work)
+ Design exploration with 4X difference in performance and 60%
difference in area
+ Manual design with > 1000 lines of code
39
Experimental Results (Throughput)
+Platform: Xilinx Virtex-4 FPGA
Original AMP Original AMP
11 11 Slices | Slices L
fir 3 1 241 510] 2.12
idet 4 1 354 359] 1.01
litho 16 1 1220 2066| 1.69
matmul 4 1 211 406| 1.92
motionEst 5 1 832 961] 1.16
palindrome 2 1 84 65 0.77
avg 5.67x 1.45

+ Average 6x performance improvement with 45% area overhead

40

Page 20

Limitations

+ Non-affine memory references

= Data reuse will introduce modulo operations to
memory references

= (a,;*i+by) %m
= m: reuse buffer size
= ASP-DAC 2012

R,
o What if (a,-a,) | (by-b,)? 2+«i+1 SRR
= Can’t find suitable N 2% 3xi+1

] . i+4 4*i+1
= Solution here, increase Il

= |CCAD 2012

jury

Memory Partitioning for Data Reuse

+ On-chip reuse buffer: Reduce the repeated off-chip accesses
[Cong, DAC'11, ICCAD'11]

= Temporarily store the fetched data on-chip

= Then repeatedly access them on-chip FPGA
¢ Example [Cong, ICCAD'11] Off-chip App
SDRAM datapath

Data reuse will introduce modulo operations

to memory references

data_type buf[2][400];
for i=0 to 199
for i=0 to 199 for j=0 to 299

for j=0 to 299 for k=0 to 399 {
for k=0 to 399

- =f(A[i. j, k], A[i-3, j, k].
All, j-2, k], AL, j, k-11);

Page 21

An Motivational Example*

H.264 motion compensation

//access from off-chip memory
Jor (j=0;j <16 j++)
Sfor (i=0;i<16;it++){
pp0 = lumabuffer(j[i];

[1
ppl = lumabuffer[jjfi+1]; . b . . ‘ ‘ b b .
| |

pp2 = lumabuffer[j][i+2];
pp3 = lumabuffer[j][i+3];
pp4 = lumabuffer[j][i+4];
ppS = lumabuffer[j][i+5]; \)
filter(pp0,pp1,pp2,pp3,pp4,pp5,&out,...);

reuse

*Y. Wang, P. Zhang, X. Cheng and J. Cong, "An Integrated and Automated Memory Optimization Flow for FPGA
Behavioral Synthesis", ASP-DAC2012

An Motivational Example

H.264 motion compensation

imgpel RUB[6];
for (j=0; j < 16; j++)
{ //Reuse buffer pre-fetch
RUB[0] = lumabuffer[jJ[0]; RUB[1]......
for (i=0;i<16i++) {
pp0 = RUBJi%6];
pp1 = RUB((i+1)%6];

pp2 = RUB((i+2)%6];
pp3 = RUB((i+3)%6];
pp4 = RUB(i+4)%6];
pp5 = lumabuffer(j][i +5] ;

RUB

o— 0 O
o— 10— 0
o— 10— 0@
o— 10— 0
o— 10— 0

o
I
o
!
® 000

l RUB Partitioning
filter(pp0,pp1,pp2,pp3,pp4,pp5,&oult,...);

RUBI(i+5)%6]= pp5;
[(F+5)%61= pps; 1} RUBO, RUB1, RUB2, RUB3, RUB4, RUBS

44

Page 22

Limitation of AMP Algorithm in ICCAD’09
+ Partitioning for affine indices [Cong, ICCAD’09]

* R;:a,*i+b, and R,:a,"i+b,
= n, : number of banks
= Solution1: gcd(a, - a,, n,) 1 (b,- b,)
+ Example for array with modulo indices
= Array RUB, size=99
= Accesses to RUBJ[i%99] and RUB [(7*i+1)% 99]
= Bank partitioning : 2
= j=14, accesses to 0,14, conflict!

Extension to Support Modulo Operations [ASPDAC’2012]

+ Extended approach for indices with modulo operation
* Ry:(a;*i+by)%m and R,:(a,"i+b,)%m
» m : size of the reuse buffer
* n, : number of banks
= Solution2: gcd(a, - a,, m, n,) 1 (b,- b,)
+ Example
= Array RUB, size=99
= Accesses to RUB[i%99] and RUB [(7*i+1)% 99]
= n2=3, because gcd(6, 99, 3) £ 1 n<=n,
= j=14, accesses to 0,14, no conflict!

ofil: s 196 9] o8

Page 23

Memory Partitioning + Padding

+ Memory padding
= Memory size = original size + padding size

+ Padding and bank searching
= Partitioning n and padding mp

= Solution3: gcd(a, - a,, m+mp, n) 1 (b,- b,)

+ Example (RUBJ[i%99] and RUB [(7*i+1)% 99])
= padding = 1 (RUB[i%100] and RUB [(7*i+1)% 100])
= gcd(6,100,2) £ 1, n =2

= j=14, accesses to 14,99, no conflict!

Experimental Result

throughput latency LT CP(ns) BRAM w_pad
speedup
MYTEST |_partition | 3x 1.825x 3289 4.860 26
merging 3684 4.929 8
improve -12% -1.42% | 69.23%
DENOISE partition | 10x 2.675x 11849 4.983 40
merging 14715 4.997 30
improve -24% -0.28% | 25%
REGISTRATION partition | 6x 7.02x 32990 | 4.996 72
merging 33341 4.992 54
improve -1% 0.09% 25%
SEGMENTATION | partition | 7x 7.16x 30938 5.000 36
merging 31723 4.998 18
improve -2.5% 0.04% 50%
CONVOLUTION | partition | 3x 4.11x 6164 4.963 42
merging 6938 4.893 20
improve -12.6% | 1.41% 52.38%
AVERAGE improve (5.8x 4.559 @ 0.00% 44.32%

Xilinx AutoPilot, ISE (Virtex-6)
0~1.7% (max: 64bytes)

Performance
improve

BRAM reduction

Area
overhead

Frequency
influence

!

Padding:

Ui

Page 24

Vertical and Mixed Memory Partitioning*

+ Horizontal Scheduling
Vi, a,*i+b,#a,'i+b, mod N& ged(a;-ay, N) + (by-b,)
*What if (a,-a,) | (b,-b,)?
=Can’t find suitable N, increase I/

R,
2xi+1 9xi+1
2% 3xi+1

i+4 4xi+1
+ Vertical Memory Partitioning and Scheduling

=Schedule accesses of the same memory reference in different loop iterations to
non-conflicting memory banks

=Can generate valid partitions for any affine memory references

+ Mixed Memory Partitioning and Scheduling

=Relax constraints to allow different memory references in different loop
iterations to be scheduled in one cycle to non-conflicting banks

* P. Li, Y. Wang, P. Zhang, G. Luo, T. Wang and J. Cong, "Memory Partitioning and Scheduling
Co-optimization in Behavioral Synthesis", to appear in ICCAD 2012

Motivational Example

for(i=0;i<K; i++)
Rl [Re] e
’ Forany N, &R, =N sum+=ufil+u[2]+u[3*];

- . e e . - &R2N=2*N,&R3N=3*N
' ' Ry: 3
&R,y = 8R,y= 8R; = 0mod N - :

’ Memory port p =1

= — —
£
= Conflict
increase Il
\ How about schedule accesses of the same memory reference in different
- loop iterations to non-conflicting memory banks — Vertical Algorithm
Horizontal

([[=3, N=1) N: Partition factor
m: Number of memory references in the loop
R; : j-th memory reference in loop, a;‘i+b;
R, jck-th iteration of memory reference j, or a;k+b;
II: Initiation Interval
p: Memory port number 50

Page 25

An Motivational Example

Time

Horizontal |
(=3, N=1) !

Vertical
(II=1 N=3?)

for(i = 0; i < K; i++)

sum+=uli]+u[2*i]+u[3*];

&Ry =0, &Ry, =3, &R,;=6
&R;, = 8R;,= &Ry;= 0mod 3

51

Motivational Example

Time

Horizontal I
(=3, N=1) .

Vertical
(IF1 N=4?)

for(i=0; i <K; i++)

sum+=uli]+u[2*i]+u[3*i];

&R, =0, &R,,=4
&Ry = &Ry, = 0mod 4

52

Page 26

Motivational Example

Time

Horizontal |
(=3, N=1) !

[Fe] [F] []
RM RJ,1 R32
R Ru Re
Vertical
(=1 N=5)

for(i = 0; i <K; i++)

sum+=uli]+u[2*i]+u[3*i];

No confliction

How about relaxing constraints to allow different
memory references in different loop iterations to
be scheduled in one cycle? — Mixed Algorithm

53

Motivational Example

Time

Horizontal I
(=3, N=1) .

for(i = 0; i < K; i++)

sum+=uli]+u[2*i]+u[3*i];

R3 0 R3,1 R.'! 2

Vertical
(IIF1 N=5)

Mixed
(I=1, N=4)

54

Page 27

Proposed Memory Architecture: Decoupling Memory System and
Compute System (Delaying Responses with Required Throughout)

Memory

/

System

Memor
Ry6

Memory R,
=

Memoryl Ry 5 1

I
N iy pEl

Memory- 8

;

=
)
e

< 0

s

_E ________

|
I
|
|
3

Compute

System

]

sum+=u[il+u[2*i]+u[3*i];

Ry Ry: 3

1.How to find valid partition factors?

for(i = 0; | < K; i++)

Problems:

2.How to find the best schedule for a
given partition factor?

3.How to find the best partition and
schedule?

- Memory/Compute Interface

55

Vertical Scheduling Algorithm Overview

Loop Nest Memory Pla.tform
Information]

‘ Array Subscripts Analysis ‘

Problems:

1.How to find valid partition
factors?

2.How to find the best

schedule for a given partition
factor?

3.How to find the best partition
and schedule?

Memory Scheduling ‘

; Problem 1

Platform Specific
Cost Functions

Cost Estimation ‘

’ HLS tools ‘

Pipeline Results

Problem 2

- Problem3

Page 28

Vertical Memory Scheduling (Problem 1)

o Theorem: N is a valid partition factor
{N >m * ng(N, al)/(” * p) N: Partition factor

N >m = ng(N, az)/(” " p) m: Number of memory references in the loop

a;: Coefficient of the j-th mem refs R;: a*i+b;

N>m=* ngE].V.,.am) /(” * p) II: Initiation Interval
p: Memory port number

+ Corollary:
= Vertical algorithm can generate valid partitions for any affine
memory references
= m*max(ay, ay ..., a,) / (I * p) is a valid partition factor

57

Vertical Scheduling for Motivational Example

N=3* ng(N, 1) (1) for(i = 0; i < K; i++)
. sum+=u[il+u[2*i]+u[3*i];
NETEND O e

N = 3* gcd(N, 3) (3)
+N=3 fails on Eq. (3), so 3 is not a valid partition factor
#N=4 fails on Eq. (2), so 4 is not a valid partition factor

#N=5 satisfy all the Eqs, so 5 is a valid partition factor

58

Page 29

Mixed Memory Scheduling (Problem 1)

o Theorem: N is a valid partition factor <

N = (II *xp) * (L1, * gcd(aq, N) + Ly, * gcd(ay, N) + -+ + Ly * ged(a,,, N))
N = (Il *p) * (Ly1 * gcd(aq, N) + Loy * gcd(ay, N) + -+ + Loy, * ged(ay,, N))

N = (Il *p) * (Lyy * gcd(aq, N) + Ly, * gcd(ay, N) + - + Ly * gcd(am,, N))

ij = {1 lf ng(aj‘N) l (b} - k) N: Partition factor

0 otherwise m: Number of memory references in the loop

a;: Coefficient of the j-th mem refs R;: a*i+b,
b;: Constant of the j-th mem refs R;: a%i+b;
II: Initiation Interval

p: Memory port number

59

Mixed Scheduling for Motivational Example

o IfN=3,
® Lyy=lyylismlymlyymlo=le=1
" Ly=Ly,=0
N = ged(N, 1) + ged(N, 2) (1)
{N > ged(N, 1) + gcd(N, 2) 2
N = gcd(N, 1) + gcd(N, 2) + gcd(N,3) (3)

o Eq (3) fails, so 3 is not a valid partition factor
o If N=4,

®* Lyy=LypmLyg=lyymlyp=ly=lay=lp=lyg=Ls=1

" Ly=Ly=0

N 2 ged(N, 1) + gcd(N,3) (1)
N 2 ged(N, 1) + ged(N, 2) + ged(N,3) 2)
N 2 gcd(N, 1) + gcd(N,3) (3)
N 2 ged(N, 1) + ged(N, 2) + ged(N,3) @)

« All Egs satisfied, 4 is a valid partition factor

for(i = 0; i < K; i++)

sum#=u[il+u[2*i]+u[3*i];

60

Page 30

Memory Scheduling Algorithm (Problem 2)

R [Ra sum+=u[R, o1+ ulRy I+ ulRyl;

- - sum+=u[R,]+ u[R,]+ u[R;,];

—_—e mm Em Em = = .
Rso - Rsz R sum+=u[R,,]+ u[R,,]+ u[R;,];
—_—e mm Em Em = = .
- Rys - - sum+=u[R ;]+ u[Ry 3]+ u[R; 33
—_—ee o Em Em = = =
A random mixed schedule - = Need a temporal register

7 temporal registers needed l

61

Memory Scheduling Algorithm (Problem 2)

- Ry, sum+t=u[R, o[+ u[R, o]+ u[R;];
Fad B B~ s R R R
(Ru| Ra sum-+=ulR, }+ ulR 1+ ulR

Ry Ry Ry - sum-=u[R, 1+ u[R, 1+ u[R,];

A optimal mixed schedule - = Need a temporal register

3 temporal registers needed ‘

62

Page 31

Memory Scheduling Algorithm (Problem 2)

+ Define virtual memory slot S(/, g, h)
= [:memory bank number
= g: memory port number
= h: cycle number

¢ A schedule is a mapping from R, to S(/, g, h)

Cost is the number of temporal registers

0,if h=kxII
Cost(Rje, SU g, b)) = { 1, otherwise

+ Equivalent to finding the max matching with min cost on the bipartite
memory scheduling graph
= Hungarian algorithm in polynomial time

63

Memory Scheduling Graph for the Motivational Example

— Cost = 0, Without tmp register

Cost =1, With tmp register

— Optimal Schedule

* Ry, denotes the k-th iteration of R,
for(i=0;i<K; i++)

t S, denotes the h-th cycle of memory bank I, sum+=uliFul24]+ul3H];

Limitations: Algorithm focus on minimizing temporal registers,
scheduling delay is not optimized.

64

port number is omitted for single port memory -

Page 32

Handling Dependency

Cycle 0 - Rsz

Cycle 1 -_ _Ru_ _R“_
ez S
o T e B
Cyeled _-_ m

Supposed dependency:
Ry >Ry
Ryk-> Ry

Limitations: Result for cases with
dependency is not optimal.

65

Cost Estimation (Problem 3)

What is a good memory partition and schedule?

Is partition factor the smaller the better? Not necessarily.

Memory System
Control FSM
' o
Req 1 Resp 1
1 Mem Bank 0
Req 2 |
eq L E_
e
g E . - Resp 2 R
= 2 Mem Bank 1 8
: 21 [£
g g =
ES Z £
g -y 2
= = 5
=)
]
1=
Req m S Mem Bank N Resp m\
| — Cd

66

Page 33

Cost Estimation

+ Total Cost of memory system

= Memory Banks

= Input Muxes

= Qutput Mux

= Temporal Registers
= FSM Control

= Address Translation

[Arr‘}vysizel
Aq * N *

BRAMg;,,

N-1 m—1
Do G QL)

m-1 N
ijo Cooreegia)

Calculated by scheduling algorithm

Constant

To be discussed

67

Cost Optimization: Address Translation

Optimization (ATO)

Address translation for cyclic partition

= bank_id = addr % N

= offset = addr/N

= “%"and “/" are expansive in hardware if N= 2"

+ In loops, addresses are regular with constant stride

between adjacent iterations
bank_id; + L,if bank_id; +l < N

bank_id; + 1 — N,if bank_id; + Il > N

bank_id, ={

. { of fset; + k,if bank_id; + I < N
offSetis1 = 1o ffset, + k + 1, if bank_id, +1> N

‘ Simple Add/Sub/Comp operations are used to replace expensive div/mods

Page 34

Experimental Results - Denoise

horizontal-ATO i) 10
horizontal-2An [EERYAY! 256
1007 7
vertical-ATO 701 7
| mixed BEIE 7
mixed-ATO 427 7

| sices | RAWBs | DSPs | Power
529 10 6 679

537

5239
1597
1403

2477
573
510

549

7.002
7.287

7.335
7.259
6.505

7.105
6.33
6.956

7.046

Xilinx AutoPilot 2011.4, ISE 13.2
Xilinx Virtex-6

In all experiments, Il =p =1

69

Experimental Results

Horizontal 529

6

Donoise Mixed-ATO 427 7 0
Comp(%) -19.3 -30.0 -100
Horizontal 486 10 5
Registration Mixed-ATO 289 6 0
Comp(%) -40.5 -40.0 -100
Horizontal 369 10 5
Binarization Mixed-ATO 238 5 0
Comp(%) -35.5 -50.0 -100
Horizontal 671 10 9
SEGEENEE - Mixed-ATO 452 7 0
Comp(%) -32.6 -30.0 -100
Horizontal 1674 10 141
DEGGIGI G Mixed-ATO 556 7 6
Comp(%) -66.8 -30.0 -95.7
Comp(%) -38.9 -36.0 -99.1
Xilinx AutoPilot 2011.4, ISE 13.2
Xilinx Virtex-6 ’ In all experiments, Il =p =1

| | Slices | RAMBs | DSPs_| Power | CP(ns) |
10

679 6.956
510 7.002
-24.9 0.7
358 7.208
305 5.409
-14.8 -25.0
392 7.002
297 5.293
-24.2 -24.4
891 7.302
620 6.132
-30.4 -16.0
1790 7.4
581 6.339
-67.5 -14.3
-32.4 -15.8

70

Page 35

Ongoing Work: Code Transformation for Data
Reuse [DAC’2012]

+ Off-chip memory access
= Performance: high cycle latency, low bandwidth efficiency

= Power: 50~80% in data processing applications

+ On-chip memory: Reduce the repeated off-chip access

= Fetch once, access multiple times
= On-chip resource vs. off-chip bandwidth

+ Needed in high-level synthesis FPGA
= Incorporate data reuse by source | Off-chip App
SDRAM datapath

code transformation

Position in the design flow

C/C++ program

N v Loop Transformation
Data Reuse Optimization
(P } v Buffer Allocation

@ Optimized C/C++ program =eee=eceecccccccccccaa

High-Level Synthesis v Scheduling
v Binding

@ RTLcode @ = =====e=cccccccccccc--o-

. v Logic Synthesis
RTL Impl tat
[mplementation b v Place & Route

-

Gate-Level Netlist

Page 36

Related Work

+ Memory hierarchy allocation (HA) [e.g. Issenin’07, Brockmeyer03]
= Analyze reuse candidates
= Select reuse candidates
* Tradeoff between on-chip buffer size and off-chip bandwidth
+ Loop transformation (LT) [e.g. Lim’99, Bondhugula’08]

= Reduce buffer size by reordering the loop iterations

¢ Combined LT and HA [e.g. Cong'11]
= LT needs HA to decide which reuse buffers to optimize
= HA needs LT to determine and minimize the reuse buffer size
= But this method limits to perfectly nested loops

Example of Code Transformations

/ original | data type bufl2. NI:
for i=0 to N . .
ffch buffer size
forj=0toN ,~ha / % #? chip
S1: Blij —fO(A[l,” Ali-1]] A[i-2, _]] rererence org TO T1

K [
(-3, U 2 N2+O(N) NHO(N)

for i=0 to N
forj=0to N 7w S a
- .7 . .. 4 3N+O(1)) N+O(1
S2: ClijI=f1(Bi, j1.B[i. j-11.B[i. j-21, ()
BI[i,j-3]% for j=U to N
S2: ClLi,jl=f1(B[i, jI.BIi, j-11,B[i, j-2],
B[ij-3]);

// TO transformation // T1 transformation

for i=0 to N for j=0 to N
for j=0 to N { for i=0 to N ™
S1: B[i,j=f0(Al, j], Ali-1, j], A[i-2, j] St B[lJ]_ﬂ)(A[l,J] A[l 1,51, Ali-2, j]

Ali-3, j]);
S2: C[l,]]_fl(B[l _]] B[1 j- 1] B[l =21,

Optimal loop transformatlon is dlfferent for

different off-chip bandwidth requirements!

Page 37

Problem Modeling and Formulation
Loop Transformation Encoding Data Reuse
/f/o‘r)fii:géntilN AC: off-chip access count
for j=0 to N BS: on-chip buffer size
for i':solt;oN - Calculated by polyhedral model
for j=0 to N
Is2; A J \J
™ [BS* AC* .
/70 Lf(:;(‘r?s%)%{” o P\ Ak time
for i=0 to N ==(,i Q.0 ACS_ e ®6 RC,
for j=0 to N { BSy BS, BS,
Sl; ¢Sl:(07i’09j70)r
S2;
) 9=(0,1,0, 1"
T BS=Yb,BS,, AC=4C,, -y bAC,
f“"fojj?:‘;’:: N Loop permuation 7 7
A 2d+1 vector for
each statement Knapsack problem

Efficient Design Space Exploration
Level O Level 1 Level 2 Level 3
(S1, S2)eeceu-d - (i, i)eemecen >|:(51, S2)eeecen- »—— (j,j) TO
S1, S2 ===enu- —]
= (j, j)eeen=-- (S1, S2)ecenn-- — L)
>: S1,S2 ======- - ——
= S1,82 =-=-od e »—— S1/S2 c-eeee- »——' j.j Orginal
- i, recce-- o S, S2 =eec-e- — i
= j,i dececace - S, S2 -ee-e-- p—_— i, Tl
for (277) { ——— j.j =reee-- ———— S, S2 ===c--- — i
e
) B n.qh__anri Bound) fr) |
—| Eslimate the upper and lower bound 3rf§bﬁtimal buffeorrgi”é{f:r
each branch for (=) 1 for 27 s
.Sl ; i
o”Knapsack results reuse i i
; T Intermediate resulks in the parent branch are reused in the ——
o3t |children branches i) s
} . . . for (j=...)
—These two techniques gain over 40x speed-up in for (i=..) $2:
searching optimal solution

Page 38

Experiment
Jacobi_4D
1E+10
@ \ == HTA-PNL
é 1E+9 -—'\\\\ —m=T+HA B 40% memory
8 e —m=Ourwork -
g saving and 20%
& 1T .
2 e power saving
=
2 s compared to
v w a w e previous work
Off-Chip Bandwidth (GB/s)
18 = THA-PNL
§ HLT+HA
E 14 s 14 5 0ur work
i 12 £ 1?
S 8 0.; § 08
S ® 06 S 06
T o4 204
= 0.2 g 0.2
g o g o
2 X 8 & & & ® ® & &
Q7 > Q7 Q7 O <& < N &> Q7 QO <&
& ¢ &S e s &S
2
Outline

Brief review of history of HLS
The UCLA effort

= Original motivation
= The Wave of ESL Synthesis
= Commercialization

+ Highlights of some algorithmic innovations

< Applications

= Used in design of accelerator-centric architectures

Page 39

Research Scope in CDSC (Center for Domain-
Specific Computing)

Customizable Heterogeneous Platform

9]
[o[0] [o[0] [O[0]
EE EE EE

Domain-specific-modeling

= Reconfigurable RF-I bus
===Reconfigurable optical bus:
@) Transceiverireceiver

| Optical interface

Architecture

modeling -
CHP creation > Sl
. . . Source-to-source CHP mapper

Customizable computing engines — R

i i Reconfiguring & optimizing backend

Customizable interconnects ; ;
Adaptive runtime
Customization
Design once setting Invoke many times

Center for Domain-Specific Computing (CDSC)

Aberle Baraniuk Bui
(UCLA) (Rice) (UCLA)

Cong (Director)
(UCLA)

A\ b

Palsberg Potkonjak Reinman Sadayappan Sarkar Vese
(UCLA) (UCLA) (UCLA) (Ohio-State) (Associate Dir) (UCLA)
(Rice)

Page 40

Accelerator-Centric CMP (ARC) [sAw’2011 & DAC’2012]

+ Dark silicon and utilization wall

= 6.5% utilization for a 45 nm chi
l{)erators assuming a power budget of 80 W
[ASPLOS’2010]

Our proposed solution: extensive use of
accelerators (customized or implemented
using programmable fabric)

= Sea of accelerators
Type of accelerators:

= Tightly vs. loosely coupled
Benefits

= Better performance

= Higher power-efficiency

= |t’s ok to be “wasteful”
Critical needs:

= Efficient accelerator management
* Scheduling
* Sharing

filled with 64bit

Core1

Y
=k

Accelerator1

Accelerator2

Core4

L1

Overall Architecture of ARC
¢ Architecture of ARC

= Multiple cores and accelerators

= Global Accelerator Manager (GAM)

= Shared L2 cache banks and NoC
routers between multiple

accelerators o
L__Ji
—_ Z //f x| Accelerator +
‘ g
Shared | Accelerato
Core L2$ r + DMA

| FFP@I?E'I.F
I?E@'IZ"WH\‘

m

Cotroller

Memory
controller

Page 41

Application Domain: Medical Image Processing

Medicalimages exhibit sparsity, and can be sampled at
arate <<classical Shannon-Nyquist theory :

;HARu sH +A Engad Il
sampl

Vvoxels

5
st
Vvoxel: u(i) = w; f(j)? |-20% w; =—e h
d(gm -7

V= ﬁJrv vu
at

v+ (+ V(v -v) = [T(x~0) -RX)F T(x-u)

= IVl

(data,) + Adiv
]

surface(t) = {voxels x: g(x,t) = 0}

. :-l'1'z L‘“ %+(V»V)v=—Vp+vAv+f(X()
2 S ;i @+ v 7+f x,t)
E Jax =" E

Experimental Results — Performance
(N cores, N threads, N accelerators)

Speedup over SW-Only

= 250 ® Registration Performance improvement
8 150 Deblur over SW only approaches:
100 —— = Denoise on average 168x, up to 380x

0 B Segmentation
1 2 4 8 16
Configuration (N cores, N threads, N accelerators)

Speedup over 0S-based

350
300
Performance improvement Z o = Regisraton
over OS based approaches: 5 150 Deblur
on average 51x, up to 292x] " Denoise
0 B Segmentation

1 2 4 8 16
Configuration (N cores, N threads, N accelerators)

Page 42

Experimental Results — Energy
(N cores, N threads, N accelerators)

Energy gain over SW-only version

700
600
500 - -
£ 400 = Registration Energy improvement
&30 Deblur over SW-only approaches:
ol " Denoise on average 241x, up to 641x
0 B Segmentation

1 2 4 8 16
Configuration (N cores, N threads, N accelerators)

Energy gain over OS-based version

70
60 -
Energy improvement Zo = Regisration
over 0S-based approaches: §a0 - Deblur
on average 17x, up to 63x ?g I Denoise
0 B Segmentation

1 2 4 8 16
Configuration (N cores, N threads, N accelerators)

3D Integration for Customization or Specialization

o Vertical integration:
= CMP layer + customization/acceleration layer

o Accelerators can directly access caches

= L1orL2
¢ Low latency
= 1 cycle traversal across the TSV bundle
= 2-3 cycles to get from the TSV bundle to ac £7 7853 FPGA layer
controller i L4
« Higher bandwidth P i 1 TSVs
= Almost equal to the bandwidth of the L1/L2 ca.
+ No single bottleneck
= Each cache can have its own TSV bundle Eﬂﬂ
* Sharing TSV bundles possible
o Early results: medical imaging benchmarks [ASAP’2011]

= > 7x performance gain
= >18x energy gain

Page 43

Concluding Remarks

+ Behavior synthesis is maturing
= Still plenty of room for new research
* Source-code quality is important
* System-level integration
+ Customization and specialization open many opportunities for
computer architecture innovation
= Cores
= Accelerators
= Memory

= Network-on-chips

+ Software support is also critical

Acknowledgements

+ Publications are available from

http:/icadlab.cs.ucla.edu/~cong
+ We would like to thank the supports from
= Gigascale Systems Research Center (GSRC)
= National Science Foundation (NSF)
iconductor R h Corporation (SRC)
= Various industrial sp (Altera, Intel, Mag ynopsys, Mentor Graphics, Xilinx)

= Peking University (PKU) Center for Energy-Efficient Computing and Applications
+ Former and current team members from UCLA and PKU who contributed to the HLS project

Guoling Han Wei Jiang

=
Peng Zhang Bin Liu Peng Li (PKU)

Yuxin Wang (PKU)

Page 44

